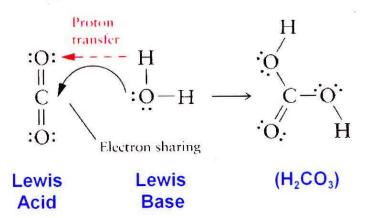
Acids and Bases

Brønsted-Lowry

Acid: Proton Donor
Base: Proton Acceptor

Strong Acids: $HCI + H_2O \rightarrow H_3O^+ + CI^ [H_3O^+] >> [HCI]$ Weak Acids: $HF + H_2O \neq H_3O^+ + F^ [H_3O^+] << [HF]$ $\{H^+(H_2O)_n\}$


Strong Bases: $O^{2^{-}} + H_{2}O \rightarrow 2 OH^{-}$ [OH-] >> [O²⁻] Weak Bases: $NH_{3} + H_{2}O \Rightarrow NH_{4}^{+} + OH^{-}$ [OH-] << [NH₃]

Lewis

Acid: e Pair Acceptor Base: e Pair Donor

Lewis Lewis Base Acid

Every Lewis base is also a Brønsted base, but not all Lewis acids are Brønsted acids, since a Lewis acid does not necessarily contain an H-atom:

Acidic, Basic, and Amphoteric Oxides

Acidic oxides are principally molecular compounds of non-metals that react with water to give a Brønsted acid:

$$SO_2(g) + H_2O(l) \rightarrow H_2SO_3(aq)$$

or with bases to give a salt + H2O:

$$CO_{2}(g) + 2 NaOH(aq) \rightarrow Na_{2}CO_{3}(aq) + H_{2}O(l)$$

Basic oxides are typically ionic compounds that react with acids to give a salt + H₂O:

CaO (s) + 2 HNO₃ (aq)
$$\rightarrow$$
 Ca(NO₃)₂ (aq) + H₂O (l)

Metal oxides (ionic): Basic

Non-metal oxides (molecular): Acidic

Metalloid oxides : Amphoteric

Basic behavior:

$$Al_2O_3$$
 (s) + 6 HCl (aq) \rightarrow 2 AlCl₃ (aq) + H₂O (l)

Acidic behavior:

$$Al_2O_3$$
 (s) + 2 NaOH (aq) \rightarrow 2 Na[Al(OH)₄] (aq)

Increasing acidity -->

Increasing basicity	I	II	Ш	IV	V	VI	VII
	Li ₂ O	BeO	B ₂ O ₃	CO_2	N_2O_5	(O ₂)	OF ₂
	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₄ O ₁₀	SO ₃	Cl ₂ O ₇
	K ₂ O	CaO	Ga ₂ O ₃	GeO ₂	As ₂ O ₅	SeO ₃	Br ₂ O ₇
	Rb ₂ O	SrO	In ₂ O ₃	SnO ₂	Sb ₂ O ₅	TeO ₃	I_2O_7
	Cs ₂ O	ВаО	Tl ₂ O ₃	PbO ₂	Bi ₂ O ₅	PoO ₃	At ₂ O ₇

Increasing acidity —

Increasing basicity

of the main-group elements, acidity tends to increase from left to right and from bottom to top in the periodic table. Oxygen difluoride, however, has only weakly acidic properties.