Acids and Bases ## **Brønsted-Lowry** Acid: Proton Donor Base: Proton Acceptor Strong Acids: $HCI + H_2O \rightarrow H_3O^+ + CI^ [H_3O^+] >> [HCI]$ Weak Acids: $HF + H_2O \neq H_3O^+ + F^ [H_3O^+] << [HF]$ $\{H^+(H_2O)_n\}$ Strong Bases: $O^{2^{-}} + H_{2}O \rightarrow 2 OH^{-}$ [OH-] >> [O²⁻] Weak Bases: $NH_{3} + H_{2}O \Rightarrow NH_{4}^{+} + OH^{-}$ [OH-] << [NH₃] ### **Lewis** Acid: e Pair Acceptor Base: e Pair Donor Lewis Lewis Base Acid Every Lewis base is also a Brønsted base, but not all Lewis acids are Brønsted acids, since a Lewis acid does not necessarily contain an H-atom: ## Acidic, Basic, and Amphoteric Oxides Acidic oxides are principally molecular compounds of non-metals that react with water to give a Brønsted acid: $$SO_2(g) + H_2O(l) \rightarrow H_2SO_3(aq)$$ or with bases to give a salt + H2O: $$CO_{2}(g) + 2 NaOH(aq) \rightarrow Na_{2}CO_{3}(aq) + H_{2}O(l)$$ Basic oxides are typically ionic compounds that react with acids to give a salt + H₂O: CaO (s) + 2 HNO₃ (aq) $$\rightarrow$$ Ca(NO₃)₂ (aq) + H₂O (l) Metal oxides (ionic): Basic Non-metal oxides (molecular): Acidic Metalloid oxides : Amphoteric ### **Basic behavior:** $$Al_2O_3$$ (s) + 6 HCl (aq) \rightarrow 2 AlCl₃ (aq) + H₂O (l) #### Acidic behavior: $$Al_2O_3$$ (s) + 2 NaOH (aq) \rightarrow 2 Na[Al(OH)₄] (aq) # Increasing acidity --> | Increasing basicity | I | II | Ш | IV | V | VI | VII | |---------------------|-------------------|-----|--------------------------------|------------------|--------------------------------|-------------------|--------------------------------| | | Li ₂ O | BeO | B ₂ O ₃ | CO_2 | N_2O_5 | (O ₂) | OF ₂ | | | Na ₂ O | MgO | Al ₂ O ₃ | SiO ₂ | P ₄ O ₁₀ | SO ₃ | Cl ₂ O ₇ | | | K ₂ O | CaO | Ga ₂ O ₃ | GeO ₂ | As ₂ O ₅ | SeO ₃ | Br ₂ O ₇ | | | Rb ₂ O | SrO | In ₂ O ₃ | SnO ₂ | Sb ₂ O ₅ | TeO ₃ | I_2O_7 | | | Cs ₂ O | ВаО | Tl ₂ O ₃ | PbO ₂ | Bi ₂ O ₅ | PoO ₃ | At ₂ O ₇ | Increasing acidity — Increasing basicity of the main-group elements, acidity tends to increase from left to right and from bottom to top in the periodic table. Oxygen difluoride, however, has only weakly acidic properties.